sgapi Documentation
Release 0.1

Mike Boers

July 14, 2015

Contents

1 Installation 3
2 Basic Usage S
3 Python API 7
3.1 SAPL v e e e e e e e e e e e e e e e 7
32 sgapil.filters i i e e e e e e e e e e 7
Python Module Index 9

sgapi Documentation, Release 0.1

This project is a lower-level Python implementation of the Shotgun API. The canonical Python API
(shotgun_api3) can be found on Shotgun’s GitHub page

This project exists because we wanted to have a little more control over the details of the connection, threading, time
handling, etc., but monkey-patching the shotgun_api3 was deemed too unsafe. Ergo, we have a minimal API that
does the few things that we need it to do at a low level.

Extra things that we implement include:
» forgiving filters which understand any of the 3 filter dialects;

* asynchronous paging during find via threads=<number of threads>.

Contents 1

https://github.com/shotgunsoftware/python-api

sgapi Documentation, Release 0.1

2 Contents

CHAPTER 1

Installation

From GitHub:

pip install —-e git+git@github.com:westernx/sgapifegg=sgapi

https://github.com/westernx/sgapi

sgapi Documentation, Release 0.1

4 Chapter 1. Installation

CHAPTER 2

Basic Usage

>>> from sgapi import Shotgun

>>> # Basic instantiation is the same:
>>> sg = Shotgun (server_url, script_name, api_key)

>>> # Info is the same:
>>> sg.info ()

's3_uploads_enabled': True,

'totango_site_id': '123"',

'version': [6, 0, 3],

'totango_site_name': 'com_shotgunstudio_example'

>>> # Finding can be the same:
>>> sg.find_one('Task', [('id', 'is', 1234)1])
{'type': 'Task', 'id': 1234}

>>> # You can also iterate over entities while requests run in a thread:
>>> for e in sg.find('Task', [...], threads=3, per_page=100):
process_entity (e)

>>> # Or you can manually construct requests:
>>> sg.call('find', {...1})

sgapi Documentation, Release 0.1

6 Chapter 2. Basic Usage

CHAPTER 3

Python API

3.1 sgapi
class sgapi . Shotgun (base_url, script_name, api_key)

call (method_name, method_params=None, authenticate=True)
Make a raw API request.

Parameters
* method_name (sf7) — The remote method to call, e.g. "info" or "read".
* method_params (dict) — The parameters for that method.
* authenticat (bool) — Pass authentication info along?

Raises ShotgunError if there is a remote error.

Returns the API results.

find (*args, **kwargs)
Same as Shotgun’s find

If threads is set to an integer, that many threads are used to make consecutive page requests in parallel.

find_iter (*args, **kwargs)
Like £ind (), but yields entities as they become available.

find_one (entity_type, filters, fields=None, order=None, filter_operator=None, retired_only=False, in-

clude_archived_projects=True)
Same as Shotgun’s find_one

info ()
Basic info request.

3.2 sgapi.filters

There are 3 different filter syntaxes we tend to see:

1. Lists of tuples: these simple filters are lists of individual filter tuples, usually “and”ed together (although the
Python API does take a filter_operator). These tuples are of the form:

https://docs.python.org/library/functions.html#str
https://docs.python.org/library/stdtypes.html#dict
https://docs.python.org/library/functions.html#bool
https://github.com/shotgunsoftware/python-api/wiki/Reference%3A-Methods#find
https://github.com/shotgunsoftware/python-api/wiki/Reference%3A-Methods#find_one

sgapi Documentation, Release 0.1

(path, relation, =*values)

e.g.:

('id', 'is', 1234)

2. Python dicts: complex logic can be expressed via dicts. They typically have the form:

{
'filter_operator': 'all', # or 'any',
'filters': [
a list of filters go here
J 14
}

The filters can either be of the simple tuples above, or additional dicts of the same form.

3. API dicts: the format that is seen by the remote API is all dicts. They look like:

{
'logical_operator': 'and', # or 'or'
'conditions': [
individual filters, such as:
{
'path': 'id',
'relation': 'is',
'values': [1234]
}V
or sub filters:
{
'logical_operator': 'and',
'conditions': [
... and so on.

}

Here we offer functions to adapt any of the above syntaxes into the RPC version.

sgapi.filters.adapt_£filters (filters, operator=None)
Given any of the 3 filter dialects, translate into the remote condition syntax.

8 Chapter 3. Python API

Python Module Index

S

sgapi, 7
sgapi.filters,7

sgapi Documentation, Release 0.1

10 Python Module Index

Index

A

adapt_filters() (in module sgapi.filters), 8

C

call() (sgapi.Shotgun method), 7

F

find() (sgapi.Shotgun method), 7
find_iter() (sgapi.Shotgun method), 7
find_one() (sgapi.Shotgun method), 7

info() (sgapi.Shotgun method), 7

S

sgapi (module), 7
sgapi.filters (module), 7
Shotgun (class in sgapi), 7

11

	Installation
	Basic Usage
	Python API
	sgapi
	sgapi.filters

	Python Module Index

